翻訳と辞書
Words near each other
・ Natural Pool
・ Natural pool
・ Natural population growth
・ Natural predictive dialing
・ Natural process variation
・ Natural product
・ Natural Product Reports
・ Natural Product Research
・ Natural Product Updates
・ Natural Products Association
・ Natural products certification
・ Natural Products Foundation
・ Natural Progression
・ Natural prolongation principle
・ Natural proof
Natural pseudodistance
・ Natural rate of unemployment
・ Natural region
・ Natural regional park of Serre
・ Natural regions of Chile
・ Natural regions of Colombia
・ Natural regions of Germany
・ Natural regions of Saxony
・ Natural religion
・ Natural remanent magnetization
・ Natural Reserve Schlangenberg
・ Natural reservoir
・ Natural resource
・ Natural resource and waste management in Tanzania
・ Natural Resource Charter


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Natural pseudodistance : ウィキペディア英語版
Natural pseudodistance
In size theory, the natural pseudodistance between two size pairs (M,\varphi:M\to \mathbb)\ , (N,\psi:N\to \mathbb)\ is the value \inf_h \|\varphi-\psi\circ h\|_\infty\ , where h\ varies in the set of all homeomorphisms from the manifold M\ to the manifold N\ and \|\cdot\|_\infty\ is the supremum norm. If M\ and N\ are not homeomorphic, then the natural pseudodistance is defined to be \infty\ .
It is usually assumed that M\ , N\ are C^1\ closed manifolds and the measuring functions \varphi,\psi\ are C^1\ . Put another way, the natural pseudodistance measures the infimum of the change of the measuring function induced by the homeomorphisms from M\ to N\ .
The concept of natural pseudodistance can be easily extended to size pairs where the measuring function \varphi\ takes values in \mathbb^m\
.〔Patrizio Frosini, Michele Mulazzani, ''Size homotopy groups for computation of natural size distances'', Bulletin of the Belgian Mathematical Society, 6:455-464, 1999.〕
==Main properties==
It can be proved 〔Pietro Donatini, Patrizio Frosini, ''Natural pseudodistances between closed manifolds'', Forum Mathematicum, 16(5):695-715, 2004.〕
that the natural pseudodistance always equals the Euclidean distance between two critical values of the measuring functions (possibly, of the ''same'' measuring function) divided by a suitable positive integer k\ .
If M\ and N\ are surfaces, the number k\ can be assumed to be 1\ , 2\ or 3\ .〔Pietro Donatini, Patrizio Frosini, ''Natural pseudodistances between closed surfaces'',
Journal of the European Mathematical Society, 9(2):231–253, 2007.〕 If M\ and N\ are curves, the number k\ can be assumed to be 1\ or 2\ .〔Pietro Donatini, Patrizio Frosini, ''Natural pseudodistances between closed curves'', Forum Mathematicum, 21(6):981–999, 2009.〕
If an optimal homeomorphism \bar h\ exists (i.e., \|\varphi-\psi\circ \bar h\|_\infty=\inf_h \|\varphi-\psi\circ h\|_\infty\ ), then k\ can be assumed to be 1\ .〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Natural pseudodistance」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.